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ON THE THEORY OF FRACTURE OF SOLIDS SUBMITTED TO POWERFUL 
PULSED ELECTRON BEAMS* 

A. A. BORZYKH and G. P. CHEREPANOV 

The irradiation of solids by pulsed (of nanosecond periodicity) relatiVistiCeleCtron 

beams (also by powerful optic laser beams) led to the discovery of a new type of 
fracture /l-14/, entirely different from viscous or brittle fracture type produced 
by mechanical loads /15/. A theory based on the assumption of formation in a solid 
subjected to such irradiation of clusters of electrons that act as "knives" or"wedg- 
es" cutting the solid. Basic model problems of this theory are formulated. 

Collective relativistic interactions of faster-than-light electrons of a beamin amedium 
are considered in Sect-l, where existence of self-compaction of beams of fast moving Charged 
particles is also demonstrated. An exact solution of the steady plane dynamic problem of the 
elasticity theory of the infinitely thin wedge moving at supersonic velocity (a solution sim- 
ilar to that of the gasdynamic problem of flow over a wedge /16/j is derived in Sect-Z. It 
is then used in Sect.3 for determining the unsteady motion of a wedge of finite length. A 
simple estimate of the fracture dimension is obtained for high initial wedge velocity. 

The first results of investigations on fracturing semiconductor crystals by intensivehigh 
energy electron beams were published by Oswald in 1966 /l/. Suchelectron beams of a density 
of iO"AIm' are generated in electron guns at voltages up to 10 MV with pulses at i0-8+10-7n and 
frequencies of hundreds of Hertz. Subsequent works disclosed and investigated the fracturing 
of such diverse materials as metals, dielectrics, ion crystals, glass, and various rocks. 

Analysis of experimental results made it possible to establish the following particularit- 
ies of the fracture process: a) fracturing of all materials (including the highly plastic 
under mechanical loads) is of the "brittle" type, i.e. the specimen appears to have been split 
by a crack without any trace of permanent set; b) initial microdefects and cracks (even fair- 
ly large) do not affect the fracture threshold, the beam intensity (the density of absorbed 
energy) at which splitting of the specimen takes place; c) the fracture threshold- a constant 
of the material--is the minimum irradiation intensity capable of inducing fracture; a) the 
crack that fractures the specimen propagates at supersonic velocity, and el the fracture 
threshold is independent of temperature and purity of crystals , as well as of the energy of 
electrons in the beam (in the range of 0.5-10 MV). These effects are entirely extraneous to 
the usual viscous, brittle, or mixed mechanical fracture. So far there is no theoretical ex- 
planation of this phenomenon. 

The problem of splitting a brittle body by a thin wedge of arbitrary form was considered 
in /l?/ whose most important conclusion was that the propagation velocity of cracks ahead of 
the wedge cannot exceed the Rayleigh wave velocity (always lower than the velocity of long- 
itudinal waves). Later, the motion of a thin wedge at a velocity higher than the Rayleighone 
but lower than that of transverse waves was investigated in /18/. It was found that the wedge 
was in contact with the body along some finite segment of its frontal part, while its remain- 
ing surface was free. Supersonic crack /propagation/ under gigantic pulses of irradiation by 
electron and laser beams, evidently presupposes the existence of some macroscopic objectswhich 
cut the body at supersonic velocity. It is reasonable to assume that in both cases (in what 
follows only high-energy pulsed electron beams are considered) there is some physical mechan- 
ism that induces the formation ofclusters of solid body electron or electron-proton plasma, 
which act as "knife edges" cutting the body. (According to certain estimates /12,19/themean- 
square propagation velocity of solid-body plasma fluctuations is of the order of 10' m/s.) 
In the case of electron irradiation one of such mechanisms can be the self-compaction of fast- 
er-than-light electrons, which comes into existence after the initial beam density has reach- 
ed a certain value. 

This hypothesis is accepted below, since it makes possible the explanation and understand- 
ing the indicated distinctive features of fracture by electron beams. The laws of motion of 
the fracturing plasma wedge in the solid are, then, determined on very rough assumptions that 
the wedge is ~solutely rigid and the body perfectly elastic (irreversible deformations at the 
crack edges cannot develop at high velocities), homogeneous, and isotropic. The resulting 
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mathematitxl problem is ~fmflar ta that af the flow of a supersonic gas over a thin wedge, 
except that it fs somewhat more ComplicMed, as will. become subssquently clear, owinq to the 
presennce of two wave equati~f in the syetezs. 

1. Calleotive relativistic i;nt:rtractjons in electron beams. The proper electro- 
magneticfieldofanelectPanwithacharg~ e<O movinSiaamediumalangiaxis zatconstMt velocity 
v higher than the phaer speed of light a, but lowet than +he velocity of light c Snvacuum 

/20/, in its proper reference system (with allowance for Lorents tXansfonnations) is of the 
f OZXi 

whsre & a!??* E,, a,, rr,, B, are czeaponents af the electromagnetic Eield ISI) in thea system of 

cQQr*atee zxr+z attached to the electron, p’ and 8’ are + reepective~y~ the pewabIlity 
and pemit;tAvlty af the medium, and M is the relativistic ?4aach mm&r. Field (1.31, (1.2) 
lies in the Mach cone of the faster-than-light electron z'> &?V,z<Q outside which the 
electron has no proper fjlold. 

Dissipation of the electron energy (and its retardation) is the result of its Eiald in- 
teraction With the medbium electromagnetic field (braking radiation lorases and excitation of 
bmmd electw%s of the substance~,wave iosseses at the t&wzh cone front (Cberenk5v aadiationt. 
and of #I% interactisul of its field wit& the erectr tfc fie&d of other e?lectrons of the 
beam fcollective interactionf. At high velocities thus, first two kinds of losses am the saxae 
for all alcctrons of the beam and do not affect the relative position of electronsj Since 
the relative position of electrons in the beam is, thus, determined by oollective interactions, 
only they ara considered below. 

Using the method of invariant IT-Integrals (as was done in the case of the Slower-than- 
Xi@& electron in the external field !23./l f and il,TI and il.21 it ls possLblet in the case 
of the Easteg_tlxaa-lfgfxl: efectrm in the ext~mal EieSrf %I = f&,1* RI = &f v to obtain 

ri = eE,, fi = i, 2, a) 11*3) 

where rr ia the irreversrfb4.e work of the external field for a unit length translation of the 
electron almg the i-th axla. when in the external field B, = 0, I’( are componont~ of the 
force acting on a charge, This cannot ba taken as self-evident in the case of faster-than- 
light veloo2ties; the method of f-integrals which tapresant a form of notation of the gen- 
eraf laws of CC_EIS~ZX~~&~~ enables us to prot-ide a strict aubstantiatian 5f the abuve fonntrla. 

&z&r that the extams1. field &Ed, is consiciered in its proper coordinate system at%ach- 
ed to the moving electran. 

Let in the trail (the Mach cone) af the leading electron e, moving in the med&um at a 
faster-than-light velocit;y V> a, bs mother electvim el for which the external ii&d is the 
ffeld (L,l), t1.2) of electron e,. Electron e, is obviously always attracted to the leading 
electronr i.e, f, = eJ&> 0. #hen two electrons move along the ~-axfs~ the attraction is 

where L is the distance between the electrons. 
Note that, since electron e, intww$23 with the Zagging field of electron e, the latter 

is unaffected by electron e,. 
A si.mpLa estimate of the behavior of a relativSstic system of eXaGtmns c2uI b43 abtz&mi 

by ~ndEj.ning t&e analpis tn the mod&. of one-dimensional se&-infinite chain of &Sctrone 
which at the initial instant of time are equally spaced at interv&.s B, A simple analytic 
solution can be obtained for the determination of motion of the single electron &* in the 

field of electron * Jn the one-dlmansional system forces can act only along the chain 
WiS. We denote by ',, the force exerted by the n -th electron on the m-thelectron (n<W. 
The resuLtant of all forces acting on thts m-th electron is 

F_=m&%zlI tr*5> 
R-SS 

Xn accordance with 11.11, iP.3), and iL.5) we have at the initial. instant of ttie 
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Using the estimate of /22/ for the sum in the right-hand side of this equality we obtain 

Fl W d F,,, (a) < rPFl (b) / 6 

which shows that Fm(b) differs only little from 4 lb) for any m. 
The relativistic differential equation of electron motion is according to (1.4) in the 

attached reference system of the form /23/ 

Its solution with the following initial conditions for t=o:z= -b, dz, dt = 0 yields 

(1.6) 

Let us estimate the characteristic time T in which electron e, converges with fg (a 
compact system of two electrons is formed in which quantum interactions that are not account- 
ed for in the solid medium model, play the determining part, and the retarding forces due to 
radiation of the accelerated electron; the applicability limit of solution (1.6) for thebeams 
used (inpractice) may be roughly estimated using distances of order lo-13 m). Setting z -= 0 

we obtain (1.7). 

(1.7) 

0 : c-’ %l w Fig.2 

Fig.1 

Note that the quantities b,t and t are considered in the moving electron proper co- 
ordinate system. Passing to the laboratory /coordinate/ system using the Lorentz transform 

b' = b (1 _ v?i$)“:, 1’ = t (1 _ V~/C~)-‘!~, from (1.7) we obtain 

‘8 t 

(T’)* = 
zt%&,(b’) 

4ezp (i - V/Z~"[VW - (rr)-'1 
(1.8) s 

The dependence of 'c' on o = I'*ic2 for some constant pe is shown in Fig.1. It will be 
seen that the effect of convergence is the most pronouned in that range of particle velocit- 
ies (energies) where the characteristic time T' is less than the time of existence of the 
directed faster-than-light beam in the medium. When 0, = (21~ f 3)/(5pe), the time 5' reach- 
es its minimum value 

(1.9) 

where for electron beams C,, = 6,435.10-? m-'19 s. For example, when h’ - 10~@ m (this is the 
order of distances in the applied pulsed electron beams), we obtain t,' - lo-I0 s. 

As shown on the simple model, a mechanism of self-canpaction exists in relativistic 
electron beams in a medium (theoretically this effect holds for any beams of uniformly charg- 
ed particles of corresponding energies). Since time T is assumed small in the problem form- 
ulation, ,the effect of that mechanism can make itself felt only in the case of beamsoffairly 
high initial intensity, i.e. small b’. The initial beam density needed for the formation of 
a dense bunch in a dielectric medium (IJ = 1) can in accordance with formula (1.9) be estimat- 
ed as 

g - (b’P > cm2 (1 1 &-y/ST-~ (1.10) 

The time T of existence of a beam of faster-than-light electrons in a medium is deter- 
mined by two factors, viz. deceleration of electrons to the velocity of light and by the 
losses due to excitation and ionization of the substance bound electrons /24/. A more exact 
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estimate of critical density in the case of high energies (W>@o,) can be obtained from 
formula (1.8). 

It should be pointed out that the initial density calculated by formula (1.10) is hicjher 
than the usually attained mean density. However, 
the accelerator pulse duration, 

?jince time T is considerably shorter than 
dimensions of the critical density region may be considerably 

smaller than dimensions of the beam. In small volumes large densities can be due to nonuni- 
form density distribution (usually considerable /11,14/J in the radial and axial directions, 
as well as to the stream of ionized electrons /24/ and to the possibility of large fluctua- 
tions in small volumes. 

2. Steady supersonic motion of an, infinite wedge. Let an infinitely thin wedge 
with an apex angle of 2c( move in an elastic medium at constant supersonic velocity v (Fig.2). 
In the system of coordinates xy attached to the wedge the equations of the steady Plane 
problem of the dynamic theor/ of elasticity are of the form 

_+,(I &b, 
+ hl$? - 2M177 a% +2-3 aray +M,"-I)+- 2% 

% -a?, 
P 

(2.2) 

where (0, and d+ are wave potentials, u, and uy are displacements, c,,, ayy, and #XV are 
stresses, $I, are modified Mach numbers, p is the Lam& constant of the elastic medium, and c, 
and c2 are the velocities of longitudinal and transverse elastic waves. 

In terms of wave potentials the velocities of the medium are of the form 

VI==-- v I-+ ! a*@, 
aTi_’ 

arcD, _), vv~-v(~--$) azay (2.3) 

The general solution of Eq.i2.1) is 

CPi = 'Fj (x - &liV) +- $< (J + M,y) (2.4) 

where vi and $11~ are arbitrary twice differentiable functions. Potentials mi are determined 
in regions bounded by sets of Mach lines zcb Miy = 0 and the wedge surface. We denote para- 
meters of the unperturbed medium(where the displacements and stresses are zero),by subscript 
0, those of the medium between the Mach lines x + &f,y = 0 and z +- $1,~ = 0 by subscript 1 

and those between x i. hity = 0 and the wedge surface by subscript 2 (Fig.2). 
The conditions of conservation of mass and momentum at discontinuities - the Mach lines 

-are (owing to symmetry) we restrict the analysis to the upper half-plane, of the form 
along z 1- Xl,y = 0 

p&u1 = I.'1*11 (2.5) 

(JOI - 0'11 = I)O"Ol (*o* - L'n). 701 - Tll = POVO, (%l - 'VU) 

and along z 4 h&y = 0 

p1v,- = ()pl:~4 (2.6) 

b,, - Ulp = (IiL”lz (C,, - V-2), T,2 - Ts2 = (),V12 (W,2 - W& 

where p is the medium density, G',~ and WIT are the components of the medium velocity normal 

and tangent to Mach lines (with the normal nk) in region 1, and alk and T6k are the 

normal and tangent components of the stress vector in area elements with the normal ati in 
region 1. 

We express, in conformity with (2.2)- (2.41, the quantities v(k, WIR,UR and in in terms 
of second derivatives ql" and $Q" of potentials. From conditions (2.5) at the discontinuity 

of s-+&y = 0 we obtain 

(2.7) 

(since , n u = p&z-, the second condition (2.5) is an identity). 
From conditions (2.6) on .r + RfZy = 0 with allowance for (2.7) we obtain 

rpz" = 0. Pz = 01 l2.9) 

Smallness of the wedge apex angle has been taken here into account, and the density of the 
medium in each of the regions 0, 1, 2 was assumed constant. 
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It is evident that under conditions 
tinuous. 

(2.7) and (2.8) the displacements are everywhere con- 

The substitution of (2.7) and (2.8) into (2.2) and (2.3) yields 
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(2.9) 

We recall that in formulas (2.9) z-t X1*$/ serve as arguments of functions 
regions 0 it is necessary to set &" = 0 and $l - 0 but $." - 0 In regioz';.and that in - - 

At the wedge surface y + &r = O(6 = tga) the velocities &d stresses are of the form 

rqe = -v (1 + 6?)+ 16 + (M, + S)q," + (MS6 - I)&"1 
w3 = --v (1 $ 6*)-"~l(h1,6 - i)ql" - (M, + S)& - 11 

(2.10) 

o,a/p = {[(I + M,? - 2h11")S? + 4M,6 -I hl,? - 11$, -+- 2 (M,S - l)(M, + f+&")(l + 6')-' 

T&L = (2 (M, + S)(M,6 - l)ql" +-I(MX2 - 1)6* - 4M,6 + 1 - M221q.P"}(1 + 6')~' 

where (Mi - 116)~ is the argument of functions $i'. 
The absence of normal velocity components of the medium on the wedge surface implies in 

conformity with (2.10) that 

(1 - M&'," (Mzy - y/6) - (M, -1 6)$," (hl,y - y/6) = 6 (2.11) 

The second boundary condition at the wedge surface is generally of the form 

V3 = F 0% %a) (2.12) 

where F is a function obtained from experimental data or model concepts. It is, for instance, 
possible to assume that $6 =fu&, where ! is the friction coefficient. 

Conditions (2.11) and (2.12) enable us to determine functions $' and &", and completely 
solve the stated here problem of determination of the velocity and stress fields (2.9) atsuper- 
sonic motion of the wedge in an elastic medium. It will be seen that in each of regions land 
2 the velocity and stress field is piece-wise constant (as in the similar gasdynamical problem 
of flow over a wedge /16/). We present the final formulas only for the simplest and important 
case, restricting to the minimum the use of data on insufficiently known properties of super- 
sonic clusters. 

Ignoring friction (F = 0) and restricting the analysis to very small apex angles of the 
wedge (6 < l/M,), from (2.9)- (2.12) we obtain 

(I -&*)a 
‘$I”= (1 + M,*)(M1 + 6) ’ ‘& 

n 

= -& ’ p1 

(M,'--1)b 
1 + (2 - h1,2) 6 I 

(2.13) 

The velocity and stress fields can be determined by substituting (2.10) into (2.13),which 
yields 

3. The braking of a finite edge in quasisteady approximation.Leta thinwedge- 
shaped body of characteristic length L and maximum thickness h = 2L tg a = 2L6) move in an 
elastic medium. The lateral surface of the wedge interacts along thatlength with the elastic 

medium, while the fracture cavity surface beyond that 
length is free (Fig.3). At the initial instant of time 

t = 0 the wedge-shaped body momentum was P,, = mu,, where 
v0 is the initial velocity, and m and P, are, respect- 

ively, the mass and momentum per unit of the wedge width. 
Let us consider the supersonic motion of the wedge- 

shaped body subjected to the resistance of an elastic med- 
ium, disregarding friction forces and the action of the 
substance in the cavity. The resistance acting on the 
wedge (per unit of width) is 

Fig.3 

which in the quasisteady approximation (2.14) yields 

R = ~SLU~~ 
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The sdutian of the eauation of .dedge motion n&v‘&== R with initial condition t -= Ce 
at t-0 is of the form 

For the solution in the 

The cosresponding distance travelled during time E by the wedge is 

Since me= p,St', where pc is the density of the wedge matexial (electron plasma) ,hence 

D 
A1 P,UO 

L -i&G- (3.1) 

l%tmula f3.t) provides a simple estimate of dimensions of the crack generate& by the 
supersonic motion of the wedge, and is g unifying characteristic of the mechanical nodal of 
supersonic fracture. 

Rexnmk on three-dimensional problems. Clusters of electron plasma are of finite 
dimensions in all directions. Hence three-dimensional problems of the supersonic motion of 
slender wedges of particulat cross-sections (such as triangular, circular, etc.) in an elastic 
body, ate of interest. The most impoxtant of these are the problems of supersonic mathematic- 
al branch cutsI in connection with which arises the problem of determtnatfon of crack detach- 
ment from the wedge profile< typical of hydrodynamic detached flms. 
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